
AP Review Problems

1. If
$$y = (x^3 + 1)^2$$
, then $\frac{dy}{dx} =$
(A) $(3x^2)^2$ (B) $2(x^3 + 1)$ (C) $2(3x^2 + 1)$ (D) $3x^2(x^3 + 1)$ (E) $6x^2(x^3 + 1)$
3. For $x \ge 0$, the horizontal line $y = 2$ is an asymptote for the graph of the function f . Which of the following statements must be true?
(A) $f(0) = 2$
(B) $f(x) \ne 2$ for all $x \ge 0$
(C) $f(2)$ is undefined.
(D) $\lim_{x \to 2} f(x) = \infty$
(E) $\lim_{x \to y} f(x) = 2$
4. If $y = \frac{2x + 3}{3x + 2}$, then $\frac{dy}{dx} =$
(A) $\frac{12x + 13}{(3x + 2)^2}$ (B) $\frac{12x - 13}{(3x + 2)^2}$ (C) $\frac{5}{(3x + 2)^2}$ (D) $\frac{-5}{(3x + 2)^2}$ (E) $\frac{2}{3}$
6. $\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$
(A) 4 (B) 1 (C) $\frac{1}{4}$ (D) 0 (E) -1
12. The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?
(A) $V(t) = k\sqrt{t}$
(B) $V(t) = k\sqrt{t}$
(C) $\frac{dV}{dt} = k\sqrt{t}$
(D) $\frac{dV}{dt} = k\sqrt{t}$

